
Instituto de Engenharia de Sistemas e Computadores de Coimbra

Institute of Systems Engineering and Computers

INESC – Coimbra

Marta Pascoal and Marisa Resende

Dynamic preprocessing for the minmax regret robust shortest path problem with

finite multi-scenarios

No.10 2014

ISSN: 1645-2631

Instituto de Engenharia de Sistemas e Computadores de Coimbra
INESC – Coimbra

Rua Antero de Quental, 199; 3000 - 033 Coimbra; Portugal
www.inescc.pt

Dynamic preprocessing for the minmax regret robust shortest

path problem with finite multi-scenarios

Marta M. B. Pascoal∗, Marisa Resende

September 22, 2014

Department of Mathematics, University of Coimbra
Apartado 3008, EC Santa Cruz, 3001-501 Coimbra, Portugal

Phone: +351 239 791150, Fax: +351 239 832568

Institute for Systems Engineering and Computers – Coimbra (INESCC)

Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal

E-mails: {marta, mares}@mat.uc.pt

Abstract

The minmax regret robust shortest path problem aims at finding a path that minimizes the

maximum deviation from the shortest paths over all scenarios. It is assumed that different arc

costs are associated with different arc scenarios. This paper introduces techniques to reduce the

network, before a minmax regret robust shortest path algorithm is applied. The preprocessing

methods enhance others explored in previous research. The introduced methods act dynamically

and allow to update the conditions to be checked as new network arcs or network nodes that

can be discarded are identified. Computational results on random networks are reported, which

compare the dynamic preprocessing algorithms and their former static versions. Two robust

shortest path algorithms are tested with and without these preprocessing rules.

Keywords: Robust shortest path, Discrete scenarios, Dynamic preprocessing.

1 Introduction

One approach for dealing with costs uncertainty is to consider several possible scenarios. In the

case of the shortest path problem this is done either by associating a discrete set of costs with

each arc, or by assuming each arc cost varies within an interval. In this paper, the former case is

considered for the minimax regret robust shortest path problem, here simply called robust shortest

path problem. This problem consists of finding a path between two nodes of a network, which

minimizes the maximum regret cost of each path towards the shortest path, for all scenarios.

Yu and Yang [7] and, more recently, Pascoal and Resende [5], developed algorithms for the

robust shortest path problem. Later, inspired by the works of Karasan, Pinar and Yaman [4] and

then Catanzaro, Labbé and Salazar-Neumann [3], for the interval data case, Pascoal and Resende [6]

∗Corresponding author

2

presented theoretical results and algorithms that allow to reduce the network before a robust shortest

path algorithm is applied. These preprocessing techniques can identify arcs that are certainly part

of an optimal solution, as well as identify a priori, and later delete, nodes that do not belong to any

optimal solution.

The goal of this work is to enhance the preprocessing strategies developed in [6]. The improve-

ments are a consequence of three aspects: a new result that combines two propositions presented

in [6]; the development of dynamic preprocessing rules, in the sense that they are updated as the

preprocessing algorithms run and paths are computed. The idea behind these improvements is to

further reduce the network before a robust shortest path algorithm is applied, that is, to increase

the number of detected arcs that belong, or the nodes that do not belong, to the optimal solutions.

The last aspect concerns limiting the number of scenarios to consider in the tests, and thus to save

computational time. Empirical experiments compare the new rules with the former.

The remainder of the paper contains five other sections. Notation and concepts related with

the robust shortest path problem are introduced in the next one. Section 3 is dedicated to the

development of the new preprocessing rules and of the algorithms to implement them. An example is

provided in Section 4. Results of computational tests on random instances, comparing the new rules

and their original static versions, when used together with the labeling and the hybrid approaches

presented in [5], are reported and discussed in Section 5. Conclusions are drawn in Section 6.

2 Preliminary concepts

A finite multi-scenario model is represented as G(V,A, Sk), where G is a directed graph with a set

of nodes V = {1, . . . , n}, a set of m arcs A ⊆ {(i, j) : i, j ∈ V and i 6= j} and a finite set of scenarios

Sk := {1, . . . , k}, k > 1. For each arc (i, j) ∈ A, csij represents its cost in scenario s, s ∈ Sk. It is

assumed that the graph contains no parallel arcs. Let A′ be a nonempty subset of A. Then, G−A′

denotes the subgraph of G with set of nodes V and set of arcs A\A′. In particular, G − {(i, j)} is

represented by G∗

ij .

The set of arcs (nodes) in a path p is denoted by A(p) (V (p)). Given two paths p, q, such that

the destination node of p is also the initial node of q, the concatenation of p and q is the path

formed by p followed by q, and is denoted by p ⋄ q. The cost of a path p in scenario s, s ∈ Sk, is

defined by

cs(p) =
∑

(i,j)∈A(p)

csij. (1)

With no loss of generality, 1 and n denote the origin and the destination nodes of the graph G,

respectively. The set of all (1, n)-paths in G is represented by P (G).

Let pl,sij represent the l-th shortest (i, j)-path in G, i, j ∈ V , for a given scenario s ∈ Sk. In order

to simplify the notation, pl,s is used to denote the (1, n)-path, pl,s1n, and LBs
i is used to denote the

cost of the shortest (i, n)-path in scenario s, cs(p1,sin).

The minmax regret robust shortest path problem aims at finding a path in P (G) with the least

maximum robust deviation, i.e., satisfying

arg min
p∈P (G)

RC(p), (2)

3

where RC(p) is the robustness cost of p, defined by

RC(p) := max
s∈Sk

RDs(p), (3)

and RDs(p) represents the robust deviation of path p in scenario s, s ∈ Sk, defined by

RDs(p) := cs(p)− LBs
1. (4)

An optimal solution of (2) is called a robust shortest path.

A node, or an arc, is called robust 1-persistent if it belongs to some robust shortest path.

Otherwise, the node, or arc, is denominated robust 0-persistent. The origin and the destination

nodes of the network are trivially robust 1-persistent nodes.

3 Preprocessing techniques

In [6], two sufficient conditions were established to identify robust 1-persistent arcs and robust

0-persistent nodes. The first condition restricts the arcs candidate to robust 1-persistent to those

included in the shortest (1, n)-paths. The second condition is more global, as it allows to test all the

nodes that do not belong to a given path in the network. These facts make the method based on

the second condition more effective than the first for preprocessing the network. The computational

experiments reported in [6] showed that the tests established for detecting robust 1-persistent arcs

were effective very few times, even in networks with small density.

In this section new rules are developed to improve the previous preprocessing methods. One of

them results from the combination of two rules introduced in [6], for detecting robust 1-persistent

arcs and robust 0-persistent nodes. Another one consists of restricting the number of tested scenar-

ios, whereas the remaining rules are dynamic approaches, in the sense that the tests are updated as

new solutions are computed. These new rules allow to find a bigger number of robust 1-persistent

arcs, and of robust 0-persistent nodes, than the previous.

For the sake of completeness, first, two results introduced in [6] are recalled to be used later.

Proposition 1 concerns the identification of robust 1-persistent arcs, whereas Proposition 2 concerns

the identification of robust 0-persistent nodes.

Proposition 1 ([6]). Let q ∈ P (G) be a path such that A(q) ∩ {A(p1,s) : s ∈ Sk} 6= ∅, and

(i, j) ∈ A(q) ∩ {A(p1,s) : s ∈ Sk} be an arc such that node n is reachable from node 1 in G∗

ij . Let

S(i, j) = {s ∈ Sk : (i, j) ∈ p1,s} be the set of scenarios for which the shortest (1, n)-paths contain

arc (i, j) and p1,s
∗ij denote the shortest (1, n)-path in P (G∗

ij) in scenario s, s ∈ Sk. If

∃ŝ ∈ S(i, j) : RDŝ(p1,ŝ
∗ij) > RC(q), (5)

then arc (i, j) is robust 1-persistent.

Proposition 2 ([6]). Consider a path q ∈ P (G), and a node i /∈ V (q). If

∃ŝ ∈ Sk : RDŝ(p1,ŝ1i ⋄ p
1,ŝ
in) > RC(q), (6)

then node i is robust 0-persistent.

4

The combination of Propositions 1 and 2 can further enhance the former preprocessing rules.

Even though the search for robust 1-persistent arcs is confined to the set of arcs of the shortest

(1, n)-paths of the network, identifying one of them makes easier the detection of robust 0-persistent

nodes. In fact, under such circumstances, the robust deviations calculation can be avoided. This

result is stated in the following.

Corollary 1. Let arc (i, j) be a robust 1-persistent, and let q ∈ P (G) be a path, with (i, j) ∈

A(q) ∩ {A(p1,s) : s ∈ Sk}. Then, any node j′ /∈ V (q) such that (i, j) /∈ p1,ŝ1j′ and (i, j) /∈ p1,ŝj′n, for

some ŝ ∈ S(i, j), is robust 0-persistent.

Proof. If arc (i, j) is robust 1-persistent and (i, j) ∈ A(q) ∩ {A(p1,s) : s ∈ Sk} for some q ∈ P (G),

then, according to Proposition 1, (5) is satisfied for some ŝ ∈ S(i, j). Since p1,ŝ
∗ij represents the

shortest (1, n)-path for scenario ŝ in G that does not contain arc (i, j), then, any other path

q′ ∈ P (G), such that (i, j) /∈ A(q′), satisfies cŝ(q′) ≥ cŝ(p1,ŝ
∗ij), and, from (5),

RDŝ(q′) ≥ RDŝ(p1,ŝ
∗ij) > RC(q). (7)

Hence, any node j′ /∈ V (q) such that (i, j) /∈ p1,ŝ1j′ and (i, j) /∈ p1,ŝj′n makes that p1,ŝ1j′ ⋄ p
1,ŝ
j′n does not

contain arc (i, j), and, therefore, q′ can be set to that (1, n)-path. Thus, (6) follows from (7), and

according to Proposition 2 this means that j′ is a robust 0-persistent node.

Some results are now presented to support an algorithm for identifying robust 1-persistent

arcs and another one for identifying robust 0-persistent nodes. As mentioned earlier, the idea

behind these versions is to make the search dynamic and detect robust 1-persistent arcs and robust

0-persistent nodes, according to the least robustness cost of the (1, n)-paths obtained along the

process.

Let RCmin be a variable which stores the least robustness cost of a computed (1, n)-path at

any iteration of the algorithms. That variable is initialized with

RCmin = min{RC(p1,s); s ∈ Sk},

for detecting robust 1-persistent arcs, and, considering only the shortest (1, n)-path in scenario 1,

p1,1,, with

RCmin = RC(p1,1),

for identifying robust 0-persistent nodes. Let Arc and Nod denote the sets of arcs and of nodes to

be scanned, respectively. The conditions provided by Propositions 1 and 2 can be rewritten, using

variable RCmin. For any arc (i, j) ∈ Arc, if node n is reachable from node 1 in G∗

ij and

∃ŝ ∈ S(i, j) : RDŝ(p1,ŝ
∗ij) > RCmin, (8)

holds, then the arc (i, j) is robust 1-persistent. Similarly, for any node i ∈ Nod, if

∃ŝ ∈ Sk : RDŝ(p1,ŝ1i ⋄ p
1,ŝ
in) > RCmin, (9)

is satisfied, then the node i is robust 0-persistent. These conditions demand the tree of the shortest

(j, n)-paths for each scenario s, denoted by T s, j ∈ V , s ∈ Sk, and their costs LBs
j , to be known.

Any shortest path tree algorithm can be used with such purpose [1].

5

Let A1 (V0) be used to collect the robust 1-persistent arcs (0-persistent nodes). Let also Q be

the set of the shortest (1, n)-paths with the minimum robustness cost, i.e.

Q = {p1,s : s ∈ Sk and RC(p1,s) = RCmin}.

According to Propositions 1 and 2, and to the initialization of RCmin, Arc and Nod are initialized

by

Arc =
{
(i, j) ∈ A(q) : q ∈ Q

}
,

and

Nod = V \V (p1,1).

The value of variable RCmin may change along the algorithms. The (1, n)-paths computed by

the algorithms are stored in a list XP , without repetitions. The set of arcs/nodes to scan may also

change, every time a new (1, n)-path q such that q /∈ XP has a robustness cost not greater than

RCmin. If RC(q) < RCmin, RCmin is updated with RC(q). In what follows, it is shown how to

update Arc and Nod, depending on the obtained path q satisfying RC(q) ≤ RCmin.

When identifying robust 1-persistent arcs, Proposition 1 allows to establish that if RC(q) =

RCmin, the arcs of {A(q) ∩ (p1,s) : s ∈ Sk} that were not identified as robust 1-persistent, i.e.,

those in {A(q) ∩ A(p1,s) : s ∈ Sk}\A1, should be analyzed. In case RC(q) < RCmin, the search

focuses only on the previous set, since path q is a new candidate for the optimal solution. For

a selected (i, j) ∈ Arc, path q takes the particular form p1,s
∗ij, for some s ∈ S(i, j). Under these

conditions, one can write

Arc =

{
Arc ∪

(
{A(p1,s

∗ij) ∩A(p1,s
′

) : s′ ∈ Sk}\A1

)
if RC(p1,s

∗ij) = RCmin

{A(p1,s
∗ij) ∩A(p1,s

′

) : s′ ∈ Sk}\A1 if RC(p1,s
∗ij) < RCmin

(10)

When searching for robust 0-persistent nodes, Proposition 2 establishes that the analysis of the

nodes of path q, V (q), can be skipped. Thus, if RC(q) = RCmin, the nodes of V (q) can be removed

from Nod, and, if RC(q) < RCmin, the search focuses all the nodes outside V (q) that were not

already identified as robust 0-persistent. For a selected node i ∈ Nod, path q has the particular

form p1,s1i ⋄ p
1,s
in , s ∈ Sk. Then, one can write

Nod =

{
Nod\V (p1,s1i ⋄ p

1,s
in) if RC(p1,s1i ⋄ p

1,s
in) = RCmin

V \(V (p1,s1i ⋄ p
1,s
in) ∪ V0) if RC(p1,s1i ⋄ p

1,s
in) < RCmin

(11)

Arcs/nodes may be scanned more than once, because the analyzed (1, n)-paths may have

arcs/nodes in common. This makes that some tests may be repeated after RCmin is updated.

Besides, in order to avoid repeating the path robust deviations, it is useful to store them, as

RDs
∗ij = RDs(p1,s

∗ij) , s ∈ Sk , (i, j) ∈ A, such that p1,s
∗ij exists in G∗

ij , (12)

and

RDs
i = RDs(p1,s1i ⋄ p

1,s
in) , s ∈ Sk , i ∈ V \{1, n}. (13)

A list XA/XN is used to store the arcs/nodes that have already been analyzed along the process.

The dynamic procedure for identifying robust 1-persistent arcs is outlined in Algorithm 1.

6

Algorithm 1: Dynamic version for finding robust 1-persistent arcs

1 for s = 1, . . . , k do

2 p1,s ← shortest path for scenario s;
3 LBs

1
← cs(p1,s);

4 RCmin← min{RC(p1,s) : s ∈ Sk};
5 Q← {ps

1
: s ∈ Sk and RC(p1,s) = RCmin};

6 XP ← {p1,s : s ∈ Sk};
7 Arc← {(i, j) ∈ A(q) : q ∈ Q};
8 XA ← ∅ ; A1 ← ∅;
9 while Arc 6= ∅ do

10 Choose an arc (i, j) ∈ Arc;
11 Arc← Arc − {(i, j)};
12 if (i, j) /∈ XA and node n is reachable from node 1 in G∗

ij then

13 XA ← XA ∪ {(i, j)};
14 S(i, j)← {s ∈ Sk : (i, j) ∈ p1,s};
15 for s ∈ S(i, j) do

16 p1,s
∗ij ← shortest path for scenario s in G∗

ij ;

17 RDs
∗ij ← RDs(p1,s

∗ij);

18 if RDs
∗ij > RCmin then

19 A1 ← A1 ∪ {(i, j)};
20 break;

21 if p1,s
∗ij /∈ XP then

22 XP ← XP ∪ {p
1,s
∗ij};

23 RC(p1,s
∗ij)← max

{
RDs

∗ij ,max
{
RDr(p1,s

∗ij) : r ∈ Sk\{s}
}}

;

24 if RC(p1,s
∗ij) = RCmin then Arc← Arc ∪

(
{A(p1,s

∗ij) ∩ A(p1,s
′

) : s′ ∈ Sk}\A1

)
;

25 if RC(p1,s
∗ij) < RCmin then

26 RCmin← RC(p1,s
∗ij);

27 Arc← {A(p1,s
∗ij) ∩ A(p1,s

′

) : s′ ∈ Sk}\A1;

28 else

29 for s ∈ S(i, j) do

30 if RDs
∗ij > RCmin then

31 A1 ← A1 ∪ {(i, j)};
32 break;

33 return A1

7

Algorithm 1 performs three additional tasks, when compared to the static version of the method

for identifying robust 1-persistent arcs presented in [6]. Namely, the calculation of the robustness

costs of the (1, n)-paths p1,s
∗ij, (i, j) ∈ Arc, s ∈ S(i, j), the updates of set Arc, and the repetition of

the tests (8) consequent from the update of RCmin. For the first task, assuming the trees T s and

the costs LBs
j , j ∈ V , s ∈ Sk were previously computed, the robustness cost of p1,s

∗ij, (i, j) ∈ Arc,

s ∈ S(i, j), is obtained in O(kn) time. In what concerns the second procedure, the update of Arc

by (10) is made through intersections, unions and differences of subsets in {A(p1,s) : s ∈ Sk}, which

has k(n− 1) arcs at most. An efficient way to make such operations is with indexation using hash

sets [2], which is of O(N), where N is the total number of elements. Hence, an O(kn) complexity is

obtained. For the third task, when test (8) is repeated for a given arc (i, j) ∈ Arc, O(k) operations

are required at most, one per each scenario s ∈ S(i, j), because RDs
∗ij was already determined. In

a worst case, the tasks above are performed k2(n − 1) times at most, one per each scenario in Sk

and each arc selected in Arc, with up to k(n−1) elements. Consequently, the number of operations

performed by the static procedure, O(k2mn) for acyclic networks and O(k2mn + k2n2 log n) for

general networks [6], increases by O(k3n2). Therefore, Algorithm 1 performs in O(k2mn + k3n2)

time for acyclic networks and in O(k2mn+ k2n2 log n+ k3n2) time for general networks.

The number of scenarios used to test condition (6) may make the robust 0-persistent nodes test

computationally demanding. In [6] this test uses k scenarios. The same holds for condition (9), so in

order to make this task lighter, in the following only a small number of scenarios to test M , M ≤ k,

will be considered. Moreover, for each node i ∈ Nod, when the first scenario si ∈ Sk for which

(9) holds is known, then i is a robust 0-persistent node and its analysis can halt. Hence, the tests

for scenarios si + 1, . . . ,M , if si 6= M , can be skipped. Generally, if max{si : i ∈ Nod} 6= M , the

computation of the trees T̃ s can be skipped for s ∈ {max{si : i ∈ Nod}, . . . ,M}. The pseudo-code

is given in Algorithm 2.

The static version of Algorithm 2 has time of O(kmn + kn2 + k2n) for acyclic networks and

of O(kmn + kn2 log n + k2n) for general networks [6]. In terms of the worst case computational

time complexity, the first phase of Algorithm 2 is similar to the first phase of the former version.

The second phase concerns the search for robust 0-persistent nodes, which compared to the static

version has the additional work of calculating the robustness costs of the (1, n)-paths p1,s1i ⋄ p
1,s
in ,

i ∈ Nod, s ∈ Sk, updating set Nod, and repeating the tests (9) due to the updates of RCmin.

For the first task, assuming the trees T s and T̃ s and the associate costs were previously computed,

the robustness cost of p1,s1i ⋄ p
1,s
in , i ∈ Nod, s ∈ Sk, is obtained in O(k) time. The second task

concerns the update of Nod by (11), and involves differences and unions of sets with n nodes at

most. Hence, these operations require an O(n) complexity, when using indexation through hash

sets [2]. The third procedure, demands k operations at most, one per each scenario s ∈ Sk, since

RDs
i was already determined, and, therefore, it has O(k) complexity. In a worst case, the three

tasks are performed k(n − 2) times at most, one per each scenario in Sk and each selected node in

Nod, with up to n− 2 nodes. Thus, an additional work of O(kn2) is added to the second phase of

the former version. Nevertheless, this does not affect the total complexities of the static version.

Finally, it should be noted that all the robust 1-persistent arcs and the robust 0-persistent nodes

identified with the static approaches are still identified with the dynamic approaches.

8

Algorithm 2: Dynamic version for finding robust 0-persistent nodes

1 for s = 1, . . . , k do

2 Compute the tree T s;

3 for j = 1, . . . , n do LBs
j ← cs(p1,sjn);

4 RCmin← RC(p1,1);
5 XP ← {p1,1} ; XN ← ∅;
6 Nod← V \V (p1,1) ; V0 ← ∅;
7 while Nod 6= ∅ do

8 Choose a node i ∈ Nod;
9 Nod← Nod− {i};

10 if i /∈ XN then

11 XN ← XN ∪ {i};
12 for s = 1, . . . ,M do

13 if tree T̃ s was not yet determined then Compute the tree T̃ s;

14 RDs
i ← cs(p1,s

1i) + LBs
i − LBs

1
;

15 if RDs
i > RCmin then

16 V0 ← V0 ∪ {i};
17 break;

18 if p1,s
1i ⋄ p

1,s
in /∈ XP then

19 XP ← XP ∪ {p
1,s
1i ⋄ p

1,s
in };

20 RC(p1,s
1i ⋄ p

1,s
in)← max

{
RDs

i ,max
{
RDr(p1,s

1i ⋄ p
1,s
in) : r ∈ Sk\{s}

}}
;

21 if RC(p1,s
1i ⋄ p

1,s
in) = RCmin then Nod← Nod\V (p1,s

1i ⋄ p
1,s
in);

22 if RC(p1,s
1i ⋄ p

1,s
in) < RCmin then

23 RCmin← RC(p1,s
1i ⋄ p

1,s
in);

24 Nod← V \(V (p1,s
1i ⋄ p

1,s
in) ∪ V0);

25 else

26 for s = 1, . . . ,M do

27 if RDs
i > RCmin then

28 V0 ← V0 ∪ {i};
29 break;

30 return V0

4 Example

In the following, the dynamic algorithms for finding robust 1-persistent arcs and robust 0-persistent

nodes introduced in Section 3 are exemplified. In order to better understand the differences intro-

duced in the previous algorithms with respect to the static preprocessing methods presented in [6],

the application of the two approaches is described.

Let G(V,A, S2) be the network depicted in Figure 1. Figure 2 shows the shortest path trees

from every node to node 7 in G, in scenario 1 – Figure 2.(a) – and in scenario 2 – Figure 2.(b).

Identifying robust 1-persistent arcs According to Figure 2, Q is set to {p1,1, p1,2}, with p1,1 =

〈1, 2, 7〉, LB1
1 = 2, and p1,2 = 〈1, 4, 6, 7〉, LB2

1 = 7. Given that c2(p1,1) = 12 and c1(p1,2) = 8, one

has RC(p1,1) = 5 and RC(p1,2) = 6. Hence, p1,1 is the path with the least robustness cost in

Q, and, therefore, Arc and RCmin are initialized with {(1, 2), (2, 7)} and 5, respectively, for both

9

1 0, 4

2, 9

1, 3

2

3, 1

0, 3

3

3, 3

0, 3

3, 2

4 2, 2

5

1, 5

4, 7

6

5, 2

7

i
c1ij , c

2

ij
j

Figure 1: Network G(V,A, S2)

1

2

2

0

3

3

4

7

5

4

6

5

7

0

j

LB1

j

(a) under scenario 1

1

7

2

3

3

6

4

4

5

7

6

2

7

0

j

LB2

j

(b) under scenario 2

Figure 2: Shortest path trees rooted at node 7 in G(V,A, S2)

approaches. The latter value does not change in the static method.

Static approach First, the arc (1, 2) is considered and S(1, 2) = {1}. Node 7 is reachable

from node 1 in G∗

12 and p1,1
∗12 = 〈1, 3, 2, 7〉, with

RD1(p1,1
∗12) = c1(p1,1

∗12)− LB1
1 = 1.

Therefore, as RCmin = 5, condition (8) is not satisfied, and nothing can be concluded concerning

arc (1, 2). Afterwards, arc (2, 7) is selected and S(2, 7) = {1}. Now, node 7 is reachable from node

1 in G∗

27 and p1,1
∗27 = 〈1, 3, 5, 7〉, with

RD1(p1,1
∗27) = c1(p1,1

∗27)− LB1
1 = 5.

Once again, condition (8) is not satisfied, thus no robust 1-persistent arcs are detected, i.e. A1 = ∅.

Dynamic approach Like before, Algorithm 1 first scans arc (1, 2), which does not satisfy (8)

for RCmin = 5. Additionally, the robustness cost of p1,1
∗12 = 〈1, 3, 2, 7〉 is determined by

RC(p1,1
∗12) = max

s∈S2

{1, RD2(〈1, 3, 2, 7〉)} = max
s∈S2

{1, c2(〈1, 3, 2, 7〉) − LB2
1} = 3.

which improves RCmin to 3. Therefore, because A1 = ∅, according to (10) Arc is updated to

Arc = {A(〈1, 3, 2, 7〉) ∩A(p1,s) : s ∈ S2} = {(2, 7)}.

10

Then, arc (2, 7) is selected and p1,1
∗27 = 〈1, 3, 5, 7〉, with RD1(p1,1

∗27) = 5. For the updated RCmin = 3,

the condition (8) holds, which means that arc (2, 7) is robust 1-persistent, i.e. A1 = {(2, 7)}.

Identifying robust 0-persistent nodes Figure 3 shows the shortest path trees from node 1 to

any node in G(V,A, S2), in scenario 1 – Figure 3.(a) – and in scenario 2 – Figure 3.(b).

1

0

2

2

3

0

4

0

5

3

6

2

7

2

j

c1(p1,1
1j)

(a) under scenario 1

1

0

2

7

3

4

4

3

5

6

6

5

7

7

j

c2(p1,2
1j)

(b) under scenario 2

Figure 3: Shortest path trees rooted at node 1 in G(V,A, S2)

In what follows the number of scenarios tested in (8) is limited to M ∈ {1, 2}. As mentioned in

the previous section, this constraint was not used in [6], it will be applied to both approaches for

the sake of comparing them.

Static approach Because p1,1 = 〈1, 2, 7〉 is the shortest (1, n)-path with the least robustness

cost, 5, Nod is initialized with {3, 4, 5, 6} and RCmin = 5.

• M = 1

Starting with node 3, the inequality (9) is not satisfied in scenario 1, given that

RD1
3 = c1(p1,113) + LB1

3 − LB1
1 = 1 ≤ RCmin.

The same thing happens for nodes 4,5 and 6, because

RD1
i = c1(p1,11i) + LB1

i − LB1
1 = 5 ≤ RCmin , i = 4, 5, 6.

Therefore, no robust 0-persistent nodes are detected when considering only scenario 1, V0 = ∅.

• M = 2

For scenario 2 the nodes 3, 4 and 6 still do not satisfy (9), given that

RD2
3 = c2(p1,213) + LB2

3 − LB2
1 = 3 ≤ RCmin,

and

RD2
i = c2(p1,21i) + LB2

i − LB2
1 = 0 ≤ RCmin , i = 4, 6.

11

Nevertheless, (9) holds for node 5 and scenario 2,

RD2
5 = c2(p1,215) + LB2

5 − LB2
1 = 6 > RCmin,

therefore, node 5 is the only one identified as robust 0-persistent, V0 = {5}.

Dynamic approach In this case, RCmin is initialized with RC(p1,1) = 5 and Nod with

V \V (p1,1) = {3, 4, 5, 6}.

• M = 1

Starting by scanning node 3, condition (9) is not satisfied for scenario 1. Then, the robustness

cost of the path p1,113 ⋄ p
1,1
37 = 〈1, 3, 2, 7〉 is determined, RC(〈1, 3, 2, 7〉) = 3, and this value

improves RCmin. Additionally, by (11) Nod is updated to V \V (〈1, 3, 2, 7〉) = {4, 5, 6}, since

at this point V0 = ∅.

For the updated RCmin = 3, when choosing nodes 4, 5 and 6 to scan, inequality (9) is always

satisfied for scenario 1, given that

RD1
i = 5 > RCmin , i = 4, 5, 6.

Consequently, all the nodes in Nod are identified as robust 0-persistent, i.e., V0 = {4, 5, 6}.

• M = 2

Condition (9) holds for node 3 and scenarios 1 and 2, with the initial RCmin = 5. Then, the

path associated with node 3 for scenarios 1 and 2, p1,s13 ⋄ p
1,s
37 , s ∈ S2, is given by 〈1, 3, 2, 7〉,

which has a robustness cost of 3. The remaining steps are those presented for M = 1, thus

V0 = {4, 5, 6}.

Finally, Corollary 1 is applied to detect robust 0-persistent nodes. The arc (2, 7) was identified

above as robust 1-persistent, when associated to path q = 〈1, 3, 2, 7〉, with S(2, 7) = {1}. According

to Figures 2 and 3, one has p1,114 = 〈1, 3, 4〉, p1,147 = 〈4, 6, 7〉, p1,115 = 〈1, 3, 5〉, p1,157 = 〈5, 7〉, p1,116 =

〈1, 3, 4, 6〉 and p1,167 = 〈6, 7〉, and none of these sub-paths contains arc (2, 7), i.e. (2, 7) /∈ p1,11i and

(2, 7) /∈ p1,1in , for every i ∈ V \V (q) = {4, 5, 6}. Therefore, V0 = {4, 5, 6}.

For this example Algorithm 2 is more effective than its static version, given that it detects more

robust 0-persistent nodes than the former version and the same set of nodes as Corollary 1, even

when M = 1. The applications of the previous dynamic rules and of Corollary 1 are independent.

Besides, the above results show that the dynamic rules can be a good alternative method for

preprocessing when Corollary 1 cannot be applied, that is, when no robust 1-persistent arcs have

been detected.

Computing a robust shortest path after preprocessing The reduced network obtained from

preprocessing is depicted in Figure 4. Arc (2, 7) must be contained in the optimum solution since it

is robust 1-persistent. Thus, the reduced network results from removing from G all the remaining

arcs that start in node 2, (2, 5), or that end in node 7, (5, 7) and (6, 7). At this moment nothing

can be said about the other arcs in G, represented with a dashed line in Figure 4. The robust

12

1 0, 4

2, 9

2
0, 3

3

3, 3

7

i
c1ij , c

2

ij
j

Figure 4: Reduced network after preprocessing

0-persistent nodes, 4, 5 and 6, are also removed from G, as well as all the arcs that start or end in

these nodes.

There are only two (1, 7)-paths containing arc (2, 7) in the reduced network, p1,1 = 〈1, 2, 7〉, with

RC(p1,1) = 5, and q = 〈1, 3, 2, 7〉, with RC(q) = 3. Therefore, q is the robust shortest path in G.

5 Computational experiments

This section is dedicated to the computational comparison of the static (presented in [6]) and the

dynamic (in Algorithm 2) methods for preprocessing robust 0-persistent nodes, and to their impact

on solving the robust shortest path problem when combined with the labeling and the hybrid

algorithms introduced in [5]. The reason for not considering the empirical results for preprocessing

robust 1-persistent arcs is that the methods developed with that purpose only showed to be effective

for networks with a very small density d = m/n, d ∈ {1, 2}. In fact, in these cases the majority of

the arcs of the network belongs to the shortest (1, n)-paths p1,s, s ∈ Sk, which improves the chances

of finding robust 1-persistent arcs.

Algorithm 2 and its static version were implemented in Matlab 7.12 and ran on a computer

equipped with an Intel Pentium Dual CPU T2310 1.46GHz processor and 2GB of RAM. The codes

use Dijkstra’s algorithm [1] to solve the single destination shortest path problem for a given scenario.

As mentioned earlier, the preprocessing techniques were combined with the labeling algorithm (LA)

and the hybrid algorithm (HA) in [5]. The robust shortest path problem was solved with and

without preprocessing.

The benchmarks used in the experiments correspond to randomly generated directed graphs

with n ∈ {500, 1000, 2000, 5000} nodes, density d ∈ {5, 10, 20}, and k ∈ {2, 3} scenarios. For each

scenario, each arc cost is assigned with a random integer number in U(0, 100).

For each network dimension, 10 instances were generated. For each instance, the two preprocess-

ing algorithms were applied, and (9) was tested for the scenarios 1, . . . ,M , with M ∈ {1 . . . k}. The

robust shortest path problems were solved by LA and by HA, after preprocessing. Alternatively,

LA and HA solved the same instances from scratch, with no preprocessing.

5.1 Results

In order to analyze the performance of the static and the dynamic algorithms, the average total

running times (in seconds) are calculated for each network dimension. Let P0, NP and AP0 represent

the average CPU times to preprocess robust 0-persistent nodes, to solve the robust shortest path

problem with no preprocessing, and to do the same after preprocessing, respectively. Let also TP0

denote the average overall CPU time for finding a robust shortest path combined with preprocessing,

13

i.e., TP0 = P0 + AP0. Additionally, let N0 represent the number of robust 0-persistent nodes.

The application of the static and the dynamic methods is distinguished by the indices s and d,

respectively.

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

se
c.

s 500 d s 1000 d s 2000 d s 5000 d
0

15

30

45

60

se
c.

LA, d=5, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

30

60

90

120

se
c.

LA, d=10, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

40

se
c.

HA, d=20, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

75

150

225

300

se
c.

LA, d=20, k=2

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

se
c.

HA, d=10, k=2

1 2 1 2 1 2 1 2 1 2 1 21 2 1 21 2 1 2

HA, d=5, k=2

1 2 1 21 2 1 2

1 2 1 21 2 1 2 1 2 1 2 1 2 1 2

P
0

AP
0

NP

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 21 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 21 2 1 21 2 1 2

M M

M M

 s−> static version
 d−> dynamic version

M M

Figure 5: Average CPU times for preprocessing robust 0-persistent nodes and for algorithms HA
and LA, with and without preprocessing, when k = 2

The average CPU times and the number of robust 0-persistent nodes are reported in Tables 1,

2 and 3. In Tables 1 and 2, the least total CPU time to find the robust shortest path with HA and

LA is bold typed, for each fixed n, d and k. The plots in Figures 5 and 6 show the average CPU

times for k = 2 and k = 3, respectively, depending on the density of the network.

Tables 1 and 2 and Figures 5 and 6 show that preprocessing robust 0-persistent nodes can

be more effective to solve the robust shortest path problem by HA or LA rather than without

any preprocessing. Combining dynamic preprocessing with finding a robust shortest path was

the most efficient method when HA was applied for M = 1 on the biggest networks (n = 2000,

d = 5 and k = 3, or n = 5000, except for d = 20 and k = 3), as well as when LA was applied

on most of the networks (except for n = 500 and d = 20). For all these cases, in spite of the

preprocessing work demanded by Algorithm 2 being heavier than the required by the static version,

P s
0 < P d

0 , the additional effort of the dynamic version leads to the detection of more robust 0-

14

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

40
se

c.

HA, d=5, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

25

50

75

100

se
c.

LA, d=5, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

10

20

30

40

50

se
c.

HA, d=10, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

35

70

105

140

se
c.

LA, d=10, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

15

30

45

60

se
c.

HA, d=20, k=3

s 500 d s 1000 d s 2000 d s 5000 d
0

75

150

225

300

se
c.

LA, d=20, k=3

M

M

1 2 3 1 2 31 2 3 1 2 3

M

1 2 3 1 2 3 MM 1 2 3 1 2 3

M 1 2 3 1 2 31 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 3

1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 31 2 3 1 2 31 2 3 1 2 3

P
0

AP
0

NP

1 2 3 1 2 31 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

s−> static version
d−> dynamic version

Figure 6: Average CPU times for preprocessing robust 0-persistent nodes and for algorithms HA
and LA, with and without preprocessing, when k = 3

persistent nodes, N s
0 < Nd

0 – Table 3. This contributes for a more significant reduction of the

network and consequently of the average CPU times when finding a robust shortest path after

preprocessing, AP s
0 > AP d

0 . In conclusion, the dynamic version outperformed the static version.

Besides, preprocessing with the dynamic search was also a better alternative than solving the

problem without any preprocessing, TP d
0 < NP .

15

HA LA

n d k M P s
0 P d

0 NP AP s
0 AP d

0 TP s
0 TP d

0 NP AP s
0 AP d

0 TP s
0 TP d

0

500

5

2
1 0.713 0.772

0.596
0.042 0.001 0.755 0.773

0.859
0.221 0.005 0.934 0.777

2 0.948 0.986 0.024 0.000 0.972 0.986 0.114 0.003 1.062 0.989

3

1 1.142 1.083

0.857

0.089 0.014 1.231 1.097

1.268

0.465 0.040 1.607 1.123

2 1.384 1.308 0.059 0.003 1.443 1.311 0.304 0.010 1.688 1.318

3 1.557 1.527 0.042 0.002 1.599 1.529 0.213 0.007 1.770 1.534

10

2
1 0.877 1.060

0.696
0.089 0.010 0.966 1.070

1.763
0.528 0.033 1.405 1.093

2 0.199 1.238 0.079 0.003 1.278 1.241 0.447 0.009 1.646 1.247

3

1 1.201 1.318

1.108

0.155 0.080 1.356 1.398

1.948

0.675 0.396 1.876 1.714

2 1.520 1.584 0.110 0.032 1.630 1.616 0.558 0.139 2.078 1.723

3 1.777 1.915 0.101 0.020 1.878 1.935 0.517 0.065 2.294 1.980

20

2
1 0.856 1.572

0.772
0.194 0.127 1.050 1.699

3.389
0.824 0.603 1.680 2.175

2 1.127 1.630 0.183 0.089 1.310 1.719 0.789 0.371 1.916 2.001

3

1 1.145 1.328

1.053

0.203 0.175 1.348 1.503

3.910

0.914 0.839 2.059 2.167

2 1.481 1.723 0.198 0.157 1.679 1.880 0.883 0.761 2.364 2.484

3 1.800 1.939 0.215 0.133 2.015 2.072 0.878 0.629 2.678 2.568

1000

5

2
1 1.869 1.974

1.690
0.152 0.002 2.021 1.976

2.410
0.878 0.020 2.747 1.994

2 2.354 2.476 0.077 0.001 2.431 2.477 0.455 0.010 2.809 2.486

3

1 2.783 2.873

2.520

0.156 0.020 2.939 2.893

3.192

1.002 0.107 3.785 2.980

2 3.301 3.685 0.064 0.005 3.365 3.690 0.360 0.023 3.661 3.708

3 4.055 4.084 0.037 0.002 4.092 4.086 0.199 0.013 4.254 4.097

10

2
1 1.992 2.291

1.792
0.363 0.021 2.355 2.312

4.100
2.272 0.074 4.264 2.365

2 2.634 2.753 0.325 0.008 2.959 2.761 2.033 0.023 4.667 2.776

3

1 2.922 3.074

2.646

0.377 0.074 3.299 3.148

5.328

2.595 0.480 5.517 3.554

2 3.543 3.532 0.361 0.022 3.904 3.554 2.279 0.110 5.822 3.642

3 4.136 4.274 0.307 0.011 4.443 4.285 2.181 0.050 6.317 4.324

20

2
1 2.083 2.737

1.844
0.480 0.138 2.563 2.875

8.579
2.897 0.833 4.980 3.570

2 2.629 3.140 0.428 0.062 3.057 3.202 2.738 0.358 5.367 3.498

3

1 2.547 2.845

2.594

0.586 0.488 3.133 3.333

12.061

3.391 3.051 5.938 5.896

2 3.257 3.517 0.586 0.436 3.843 3.953 3.391 2.746 6.648 6.263

3 3.787 4.223 0.580 0.411 4.367 4.634 3.358 2.524 7.145 6.747

Table 1: Average CPU time results for preprocessing robust 0-persistent nodes, n ∈ {500, 1000}

16

HA LA

n d k M P s
0 P d

0 NP AP s
0 AP d

0 TP s
0 TP d

0 NP AP s
0 AP d

0 TP s
0 TP d

0

2000

5

2
1 4.744 4.872

4.837
0.267 0.007 5.011 4.879

7.522
1.807 0.045 6.551 4.917

2 6.094 6.384 0.083 0.003 6.177 6.387 0.541 0.016 6.635 6.400

3

1 5.745 5.977

6.297

0.748 0.054 6.493 6.031

10.922

5.475 0.323 11.220 6.300

2 7.150 7.353 0.455 0.009 7.605 7.362 3.206 0.049 10.356 7.402

3 8.559 8.748 0.297 0.002 8.856 8.750 2.194 0.034 10.753 8.782

10

2
1 4.315 4.632

4.634
0.763 0.009 5.078 4.641

9.164
5.160 0.102 9.475 4.734

2 5.637 5.883 0.599 0.005 6.236 5.888 3.948 0.031 9.585 5.914

3

1 6.313 6.846

6.757

1.595 0.330 7.908 7.176

19.705

11.980 2.196 18.293 9.042

2 8.047 8.431 1.509 0.047 9.556 8.478 10.839 0.234 18.886 8.665

3 9.474 10.094 1.431 0.015 10.905 10.109 10.032 0.083 19.506 10.177

20

2
1 4.823 5.845

5.086
1.950 0.127 6.773 5.972

33.345
12.860 0.833 17.683 6.678

2 6.218 7.203 1.994 0.039 8.212 7.242 13.329 0.210 19.547 7.413

3

1 7.140 8.809

7.309

2.007 1.629 9.147 10.438

42.829

12.605 10.543 19.745 19.352

2 9.802 9.774 1.813 0.915 11.615 10.689 12.132 6.474 21.934 16.248

3 11.392 11.421 1.767 0.715 13.159 12.136 11.531 4.808 22.923 16.229

5000

5

2
1 20.486 20.905

26.757
2.259 0.003 22.745 20.908

59.962
13.748 0.160 34.234 21.065

2 26.391 26.770 0.845 0.006 27.236 26.776 4.952 0.032 31.343 26.802

3

1 25.895 25.979

32.438

6.072 0.081 31.967 26.060

103.437

43.294 0.615 69.189 26.594

2 31.760 32.382 4.414 0.056 36.174 32.438 31.870 0.198 63.630 32.580

3 37.897 38.531 3.517 0.016 41.414 38.547 25.157 0.152 63.054 38.683

10

2
1 21.449 21.797

26.601
9.967 0.014 31.416 21.811

134.070
53.750 0.187 75.199 21.984

2 27.264 27.888 7.530 0.005 34.794 27.893 46.056 0.132 73.320 28.020

3

1 27.601 26.594

31.671

10.070 0.843 37.671 27.437

149.398

70.250 6.142 97.851 32.736

2 34.233 33.236 8.812 0.077 43.045 33.313 62.080 0.616 96.313 33.852

3 40.223 39.827 7.930 0.018 48.153 39.845 55.514 0.224 95.737 40.051

20

2
1 22.396 27.453

33.868
14.781 0.430 37.177 27.883

311.511
81.121 2.391 103.517 29.844

2 29.453 33.095 14.009 0.069 43.462 33.164 82.884 0.527 112.337 33.622

3

1 28.653 42.394

34.468

12.513 6.661 41.166 49.055

301.563

79.006 46.820 107.659 89.214

2 34.135 42.061 11.397 3.018 45.532 45.079 78.269 22.580 112.404 64.641

3 41.741 45.958 14.929 1.968 56.670 47.926 78.830 14.193 120.571 60.151

Table 2: Average CPU time results for preprocessing robust 0-persistent nodes, n ∈ {2000, 5000}

17

For each fixed n, d and k, the smaller the number of scenarios for testing (9), the less effort was

required for computing the shortest path trees rooted at node 1. Hence, small values of M implied

small preprocessing CPU times. This is valid for both the static and the dynamic approaches. The

latter is always better than the first in detecting robust 0-persistent nodes, N s
0 < Nd

0 , when M is

fixed, as Table 3 shows. In general, the best value of M to consider in order to ensure that finding

a robust shortest path with preprocessing is faster than solving the problem without preprocessing,

must assure that P0 < NP and that the number of detected robust 0-persistent nodes is sufficient

to reduce the CPU time which may not exceed NP − P0. Tables 1 and 2 show that Algorithm 2

was more effective than its static version on such task when M = 1, except if n = 500, d = 20,

k ∈ {2, 3}. When M = 2 or M = 3, the dynamic preprocessing combined with LA was the most

efficient method in very few cases.

LA was always more sensitive to preprocessing than HA, and showed the most drastic reductions

with respect to NP . This can be explained by the fact that removing nodes from the network allows

to discard a considerable number of labels in LA, making easier the determination of an optimal

solution. For HA, despite the fact that eliminating nodes reduces the effort on calculating reduced

costs, preprocessing does not have so much impact, given that the search for a robust shortest path

is more focused on selecting suitable deviation arcs and that can be done in few iterations without

preprocessing [5].

n = 500 n = 1000 n = 2000 n = 5000

d k M Ns
0 Nd

0 Ns
0 Nd

0 Ns
0 Nd

0 Ns
0 Nd

0

5

2
1 267 491 535 991 1518 1992 3247 4990

2 361 495 714 994 1788 1995 4110 4994

3

1 130 410 516 881 764 1730 1477 4646

2 222 479 748 972 1126 1963 2193 4966

3 279 493 834 989 1336 1992 2633 4994

10

2
1 149 430 221 903 911 1943 1260 4939

2 196 483 290 974 1144 1990 1788 4993

3

1 65 170 161 666 106 1250 353 3782

2 120 324 236 871 188 1806 661 4724

3 151 389 286 936 264 1925 900 4915

20

2
1 19 103 113 607 8 1662 119 4404

2 34 201 146 776 14 1862 208 4806

3

1 2 16 0 52 57 266 60 1383

2 4 44 0 111 138 710 108 2713

3 5 97 1 152 179 963 155 3248

Table 3: Average number of robust 0-persistent nodes

The number of detected robust 0-persistent nodes is high for the networks with the lowest

densities (d ∈ {5, 10}), particularly for Algorithm 2 – Table 3. Moreover, when n, d and M are

fixed, less nodes tend to be detected when k increases, since N s
0 and Nd

0 also decrease. Globally,

Figures 5 and 6 show that HA or LA have similar performances for the lowest densities (d ∈ {5, 10}).

Moreover, LA is much more sensitive to the dynamic preprocessing than to the static preprocessing

for all the densities, |NP − TP s
0 | < |NP − TP d

0 |.

18

6 Conclusions

In this work new techniques were developed to identify robust 1-persistent, and 0-persistent, arcs

and nodes of the network. These techniques are dynamic versions of the preprocessing strategies

presented in [6], because the tests they involve are updated as new paths are computed. The dynamic

techniques were exemplified and its improvement towards the former versions was empirically tested

on random instances, when combined with the labeling and hybrid algorithms introduced in [5].

The performed experiments revealed that, in general, the dynamic approach is the best choice for

preprocessing robust 0-persistent nodes. Besides, LA was always more efficient after preprocessing

than with no preprocessing at all. The same only happened with HA for networks with a large

number of nodes using the dynamic preprocessing when M = 1, even for the cases for which the

static approach was not efficient.

The improvement of the dynamic method, when compared to the static version in terms of

the number of detected robust 0-persistent nodes ranged between 11% and 3600%. In general this

reduction was also more demanding in terms of the CPU times. Nevertheless, for most of the cases

the results showed that the total CPU time for solving the problem was still better when using the

dynamic, rather than the static approach. The algorithms HA and LA after preprocessing with the

dynamic method also outperformed the static version for almost all the cases. The maximum CPU

time reduction was of 71%, when using LA, and of 31% when using HA. The biggest problems, in

networks with 5000 nodes, 100 000 arcs and 3 scenarios, were solved in less than 10 seconds by HA

and in less than 50 seconds by LA, after preprocessing.

Acknowledgments This work has been partially supported by the Portuguese Foundation for Sci-

ence and Technology under project grants PEst-OE/ EEI/UI308/2014 and SFRH/BD/51169/2010.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows : Theory, Algorithms and

Applications. Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] P. Bille, A. Pagh, and R. Pagh. Fast evaluation of union-intersection expressions. Technical

report, IT University of Copenhagen, Denmark, 2007.

[3] D. Catanzaro, M. Labbé, and M. Salazar-Neumann. Reduction approaches for robust shortest

path problems. Computers & Operations Research, 38:1610–1619, 2011.

[4] O. E. Karasan, M. C. Pinar, and H. Yaman. The robust shortest path problem with interval

data. Technical report, Bilkent University, Ankara, Turkey, 2001.

[5] M. Pascoal and M. Resende. Minmax regret robust shortest path problem in a finite multi-

scenario model. Applied Mathematics and Computation, 241:88–111, 2014.

[6] M. Pascoal and M. Resende. Reducing the minmax regret robust shortest path problem with

finite multi-scenarios. In P. Bourguignon, R. Jeltsch, A. Pinto, and M. Viana, editors, CIM Series

in Mathematical Sciences: Dynamics, Games and Science III. Springer-Verlag, to appear, 2014.

19

[7] G. Yu and J. Yang. On the robust shortest path problem. Computers Operations Research,

25:457–468, 1998.

20

